Mathématiques

Question

Bonjour est ce que vous pouvez m’aider svp mrc en avance
Bonjour est ce que vous pouvez m’aider svp mrc en avance

1 Réponse

  • Réponse :

    Justifier de même que le produit de 2 nombres impairs est impair

    soit m = 2 p + 1  et  m' = 2 p' + 1

    compléter :

                        mm' = (2 p + 1)(2 p' + 1) = 4 pp' + 2 p + 2 p' + 1

                                 = 2(2 pp' + p + p') + 1  

               conclure :  donc mm' est un nombre impair  

    en déduire en utilisant les 2 propriétés ci-dessous

    le carré d'un nombre pair est un nombre pair  et inversement

    le carré d'un nombre impair est un nombre impair et inversement

    justifier que √2 n'est pas rationnel

    on suppose que √2 est rationnel; alors il existe 2 entiers a et b premiers entre eux  tel que  √2 = a/b (a/b est une fraction irréductible)

    √2 = a/b  alors  (√2)² = a²/b²

    donc  a² = 2 b²

    on en déduit que a est pair

    comme a est pair, il existe a' tel que  a = 2 a'

    donc  a² = (2 a')² = 4 a'²

    donc 4 a'² = 2 b²   donc  b² = 2 a'²

    donc b est pair

      Quelle contradiction a-t-on obtenu ? il est possible de simplifier a/b par 2  ce qui contredit l'hypothèse que a et b sont premiers entre eux c'est à dire que la fraction a/b est irréductible

    conclure : puisque l'hypothèse √2 est rationnel conduit à une contradiction donc √2 est irrationnel  

    Explications étape par étape